Catalytic lignin valorisation by depolymerisation, hydrogenation, demethylation and hydrodeoxygenation: Mechanism, chemical reaction kinetics and transport phenomena

نویسندگان

چکیده

The lignin-to-chemicals valorisation has increased the interest of scientific community in exploring effective lignin depolymerisation. Lignin is most abundant natural resource aromatic components with a high potential to be converted into various chemicals, thus increasing level an integrated biorefinery. This review focuses on depolymerisation mechanism, chemical reaction kinetics and transport phenomena studies, recently introduced field chemistry understand reactivity macromolecule two- or three-phase systems heterogeneous catalyst, liquid solvent gaseous source. involves several parallel sequential reactions aryl-ether bond cleavage leading complex mixture numerous depolymerised components. Theoretical mathematical approaches for understanding predicting catalytic parameters kinetic modelling are also discussed. data from works literature been thoroughly systematically reviewed, processed consistently presented benchmarked graphical tabular form. aspects heat mass transfer during upgrade reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gas Phase Oxidation of Acetaldehyde Reaction Mechanism and Kinetics

The mechanism of the low temperature oxidation of gaseous acetaldehyde was investigated in the temperature range of 1 50-400?°C. The minor, intermediate and major products were identified and measured quantitatively by sampling directly into the ionization chamber of an MS10-C2 mass spectrometer from the reactor. The formation of H2O, CO, CO2, HCOOH, H2, HCHO, CH3COOH and CH3OH as the major pro...

متن کامل

Modeling Transport Phenomena in Selective Catalytic Reductant Catalytic Converter with NH3 as Reductant for NO Degradation

In the current study, reduction of nitrogen oxide from exhaust gas in the presence of NH3 as reductant on selective catalytic reductant (SCR) impregnated catalytic converter was simulated using Comsol© software. Mass transfer (one-dimensional) and heat transfer (three-dimensional) governing equations were taken into account to model the unsteady state behavior of the catalytic converter. Modeli...

متن کامل

Review on Catalytic Cleavage of C–C Inter-unit Linkages in Lignin Model Compounds: Towards Lignin Depolymerisation

Lignin depolymerisation has received considerable attention recently due to the pressing need to find sustainable alternatives to fossil fuel feedstock to produce chemicals and fuels. Two types of interunit linkages (C–C and C–O linkages) link several aromatic units in the structure of lignin. Between these two inter-unit linkages, the bond energies of C–C linkages are higher than that of C–O l...

متن کامل

Lignin depolymerisation strategies: towards valuable chemicals and fuels.

Research on lignin deconstruction has recently become the center of interest for scientists and companies worldwide, racing towards harvesting fossil-fuel like aromatic compounds which are so durably put together by plants as products of millions of years of evolution. The natural complexity and high stability of lignin bonds (also as an evolutionary adaptation by plants) makes lignin depolymer...

متن کامل

Catalytic Ketone Hydrodeoxygenation Mediated by Highly Electrophilic Phosphonium Cations.

Ketones are efficiently deoxygenated in the presence of silane using highly electrophilic phosphonium cation (EPC) salts as catalysts, thus affording the corresponding alkane and siloxane. The influence of distinct substitution patterns on the catalytic effectiveness of several EPCs was evaluated. The deoxygenation mechanism was probed by DFT methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chemical Engineering Journal

سال: 2022

ISSN: ['1873-3212', '1385-8947']

DOI: https://doi.org/10.1016/j.cej.2022.137309